Associative Classification for Quantitative Stock Trading

Giuseppe Attanasio

4th SmartData@PoliTO Workshop 27 & 28 February 2019

Giuseppe Attanasio

PhD student @ Department of Control and Computer Engineering Enrolled: November 2018 Supervisor: Elena Baralis

G

Trading fundamentals

🧧 214 🖾 KONFIGU	NOITASI				KON	GURATION	CAHDLE	LINIE HOL	JHTAIN OHLC	INTRADAY 3	NONATE 1.JAHI	R SJAHRE				1.0	6.2.505060.2
Siemens AG ^{EL}	723610 10	116,039 €	116,079 €	116,059 € 0,31		T		10:00	10:30	11:00	11:30	12:00	12:30	13:00	13.30		
Allianz SE ^{EI} Fresenius Medic	radir		55 PP	dan	٦Ę	nt	al	S									
Bayer AG ^{EI}	BAY001 20	95,540 €	95,552 €	95,546 € 0,57	6 211												
Beiersdorf Aktier	ngesetlisc 520000 0	78,813 €	78,831 €	78,822 € 0,59	6 BUY												
adidas AG ^{LI}	AIEWW 9	145,123 €	145,168 €	145,145 € 0,59	As.		11										

- Stock exchange markets
- Price movements and trend forecasting
- Long- and Short- selling operations
- Technical and Quantitative analysis

Long trades

- 1. Buy from the market
- 2. Sell back to the market

Short trades

- 1. Sell to the market
- 2. Buy back from the market

$$(gross) \, profit = \frac{C_f - O_i}{O_i}$$

(gross) profit =
$$-\frac{C_f - O_i}{O_i}$$

27,50 ATL.MI 18.28 MA (20,C,MA,0) × MA (50,C,MA,0) × 25,00 22,50 21.32 20,00 8,05 17,50 1.20M RSI (14) × ↑ 44 26 17 25 13 17 22 27 12 20 set 10 18 21 lug ago 13

Chart featured by Yahoo Finance, https://it.finance.yahoo.com/

The chart includes Moving Averages and Relative Strength Index indicators.

A state-based approach

By means of associative classification

The logical pipeline that composes the trading system

Stock pre-processing

- Move from time domain to state-based representation
- Relax temporal constraints among samples
- Describe time series data by means of a combination of state variables

State variables: technical indicators and oscillators - e.g. Moving Averages, MACD, RSI - to build a structured dataset

Stock pre-processing

- The state summarize market conditions on that day
- Class labels identify price variation with respect to the following day e.g.:
 - $ROC > tr \implies BUY;$
 - $ROC < -tr \Longrightarrow SELL$
 - $-tr \leq ROC \leq tr \implies HOLD;$

Stock pre-processing

- Technical indicators domain is quantized with semantical meaning e.g.:
 - $0 < RSI \le 30$: stock is oversold condition;
 - $30 < RSI \leq 70$: stock is in normal;
 - $70 < RSI \le 100$: overbought condition.

ID	RSMA	REMA	MACD	AO	ADX	RSI	PPO	 Class
1	< 0	< 0	> 0	< 0	> 20	< 30	> 0	 BUY
2	> 0	< 0	< 0	> 0	> 20	> 70	> 0	 HOLD
3	< 0	< 0	> 0	< 0	< 20	30 < i < 70	> 0	 HOLD
4	> 0	> 0	> 0	< 0	> 20	< 30	< 0	 BUY

The logical pipeline that composes the trading system

Classifier training

- Applied algorithm: *Live-and-Let-Live* (*L*³) associative classifier
 - Extract association rules between state variables and class labels
 - Lazy pruning of harmful rules
 - Rule set split in Level 1 and Level 2 rules
- Extracted rules suggest relationships between market state variables and price variations

The logical pipeline that composes the trading system

Automated trading system

Forecasting

Predict whether the percentage price variation is above the threshold tr (or less than -tr%) on the next trading day

Type of operations Long- or shortselling operations

Operation length

Operations can last multiple days: close with a signal in opposite direction

Stop loss

Trading strategy to limit losses early closing positions.

Experimental results

A comparative analysis

Comparative studies

- Trading sessions on Financial Times Stock Exchange Milano Indice di Borsa – or FTSE MIB. About 40 stocks
- Years 2011, 2013, 2015
 - Different market conditions
- Two validation strategies
- Performances comparison with:
 - Time series models
 - Other Machine Learning classifiers

models = |D| - | initial train size |

models = 1

Top performing configurations

Year 2011, Expanding window

Year 2011, Hold-out

Classifier	Total profit	Operations	Avg PPO	Classifier	Total profit	Operations	Avg PPO
L3	43.34%	54	0.80%	L3	185.04%	249	0.74%
ARIMA	79.87%	204	0.39%	MLP	102.36%	269	0.38%
MLP	122.24%	523	0.23%	RFC	129.72%	401	0.32%
EXPSMOOTH	317.92%	1600	0.20%	SVC	83.11%	370	0.22%
RFC	179.43%	1027	0.17%	EXPSMOOTH	49.10%	785	0.06%

Top performing configurations

Year 2013, Expanding window

Year 2013, Hold-out

Classifier	Total profit	Operations	Avg PPO	Classifier	Total profit	Operations	Avg PPO
ARIMA	221.97%	104	2.13%	L3	79.95%	73	1.10%
L3	129.02%	74	1.74%	MLP	90.84%	83	1.09%
VAR	149.33%	110	1.36%	MNB	32.30%	50	0.65%
EXPSMOOTH	252.04%	351	0.72%	SVC	36.71%	100	0.37%
MNB	95.23%	190	0.50%	EXPSMOOTH	17.19%	68	0.25%

Top performing configurations

Year 2015, Expanding window

Year 2015, Hold-out

Classifier	Total profit	Operations	Avg PPO	Classifier	Total profit	Operations	Avg PPO
L3	115.29%	83	1.39%	L3	39.71%	80	0.50%
MLP	129.82%	395	0.33%	SVC	27.41%	58	0.47%
EXPSMOOTH	474.79%	1528	0.31%	MLP	26.24%	61	0.43%
SVC	32.32%	689	0.05%	RFC	134.46%	405	0.33%
LINREG	40.41%	962	0.04%	EXPSMOOTH	38.70%	533	0.07%

Conclusions

And ongoing works

Conclusions

- Results are promising
 - L³-based systems are comparable to ones that use other Machine Learning classifiers
 - Especially with mid-term forecasting horizon L³ outperforms Time Series models
- Many configurations in play:
 - Statistical test on results are required
 - Different comparisons other than ranking by average profit

Which one should I choose?

- Choice between black-box and white-box
- L³-based models are simpler to adopt in real trading systems:
 - Rules are interpretable and tunable
 - Refreshing the model each day is not required

Ongoing steps

- Extend the analysis to **Standard & Poor 500** index
 - Same years
 - USA market
- Test different financial securities
 - e.g. Cryptocurrencies
- Address the problem with sequence modeling algorithms
 - Deep Recurrent Neural Networks
 - Long-Short Term Memory Networks

Thank you!

Any question?

