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Trading fundamentals
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Trading fundamentals

• Stock exchange markets

• Price movements and trend forecasting

• Long- and Short- selling operations

• Technical and Quantitative analysis 
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Two types of operation

Long trades

1. Buy from the market
2. Sell back to the market

(𝑔𝑟𝑜𝑠𝑠) 𝑝𝑟𝑜𝑓𝑖𝑡 =
𝐶! − 𝑂"
𝑂"

Short trades

1. Sell to the market
2. Buy back from the market

(𝑔𝑟𝑜𝑠𝑠) 𝑝𝑟𝑜𝑓𝑖𝑡 = −
𝐶! − 𝑂"
𝑂"
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Trading fundamentals

Chart featured by Yahoo Finance, https://it.finance.yahoo.com/

The chart includes Moving Averages and 
Relative Strength Index indicators. 
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A state-based approach
By means of associative classification
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Stock pre-processing

Initial stock
Structured 

representation

The logical pipeline that composes the 
trading system
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State variables: technical indicators and oscillators - e.g. Moving 
Averages, MACD, RSI - to build a structured dataset

Stock pre-processing

• Move from time domain to state-based representation
• Relax temporal constraints among samples
• Describe time series data by means of a combination of state 

variables
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Stock pre-processing

• The state summarize market conditions on that day

• Class labels identify price variation with respect to the 
following day – e.g.:
• 𝑅𝑂𝐶 > tr ⟹ BUY;
• 𝑅𝑂𝐶 < −𝑡𝑟 ⟹ SELL
• −𝑡𝑟 ≤ 𝑅𝑂𝐶 ≤ tr ⟹ HOLD; 
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Stock pre-processing

• Technical indicators domain is quantized with semantical meaning -
e.g.:
• 0 < 𝑅𝑆𝐼 ≤ 30: stock is oversold condition;
• 30 < 𝑅𝑆𝐼 ≤ 70: stock is in normal; 
• 70 < 𝑅𝑆𝐼 ≤ 100: overbought condition.
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Stock pre-processing
Classification model

training

Initial stock
Rule-based 

model
Structured 

representation

The logical pipeline that composes the 
trading system
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Classifier training

• Applied algorithm: Live-and-Let-Live (L3) associative classifier
• Extract association rules between state variables and class labels

• Lazy pruning of harmful rules

• Rule set split in Level 1 and Level 2 rules

• Extracted rules suggest relationships between market state
variables and price variations
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Stock pre-processing
Classification model

training Trading signal generation

Forecasting stock 
price variations

Initial stock
Rule-based 

model
Structured 

representation

The logical pipeline that composes the 
trading system
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Automated trading system

Forecasting
Predict whether the percentage price variation is above the 
threshold tr (or less than -tr%) on the next trading day

Operation length
Operations can last 
multiple days: close 
with a signal in 
opposite direction

Type of operations
Long- or short-
selling operations 

Stop loss
Trading strategy to 
limit losses early 
closing positions.
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Experimental results
A comparative analysis
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Comparative studies

• Trading sessions on Financial Times Stock Exchange Milano 
Indice di Borsa – or FTSE MIB. About 40 stocks

• Years 2011, 2013, 2015
• Different market conditions

• Two validation strategies
• Performances comparison with:
• Time series models
• Other Machine Learning classifiers
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Two validation strategies

Expanding window Hold-out 

train

train

train

# models = |D| - | initial train size |

train test

# models = 1
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Top performing configurations

Classifier Total profit Operations Avg PPO

L3 43.34% 54 0.80%

ARIMA 79.87% 204 0.39%

MLP 122.24% 523 0.23%

EXPSMOOTH 317.92% 1600 0.20%

RFC 179.43% 1027 0.17%

Year 2011, Expanding window

Classifier Total profit Operations Avg PPO

L3 185.04% 249 0.74%

MLP 102.36% 269 0.38%

RFC 129.72% 401 0.32%

SVC 83.11% 370 0.22%

EXPSMOOTH 49.10% 785 0.06%

Year 2011, Hold-out
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Top performing configurations

Classifier Total profit Operations Avg PPO

ARIMA 221.97% 104 2.13%

L3 129.02% 74 1.74%

VAR 149.33% 110 1.36%

EXPSMOOTH 252.04% 351 0.72%

MNB 95.23% 190 0.50%

Year 2013, Expanding window

Classifier Total profit Operations Avg PPO

L3 79.95% 73 1.10%

MLP 90.84% 83 1.09%

MNB 32.30% 50 0.65%

SVC 36.71% 100 0.37%

EXPSMOOTH 17.19% 68 0.25%

Year 2013, Hold-out

21



Top performing configurations

Classifier Total profit Operations Avg PPO

L3 115.29% 83 1.39%

MLP 129.82% 395 0.33%

EXPSMOOTH 474.79% 1528 0.31%

SVC 32.32% 689 0.05%

LINREG 40.41% 962 0.04%

Year 2015, Expanding window

Classifier Total profit Operations Avg PPO

L3 39.71% 80 0.50%

SVC 27.41% 58 0.47%

MLP 26.24% 61 0.43%

RFC 134.46% 405 0.33%

EXPSMOOTH 38.70% 533 0.07%

Year 2015, Hold-out
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Conclusions
And ongoing works
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Conclusions

• Results are promising
• L3-based systems are comparable to ones that use other Machine 

Learning classifiers
• Especially with mid-term forecasting horizon L3 outperforms Time 

Series models

• Many configurations in play:
• Statistical test on results are required
• Different comparisons other than ranking by average profit

24



Which one should I choose?

• Choice between black-box and white-box

• L3-based models are simpler to adopt in real trading systems:
• Rules are interpretable and tunable
• Refreshing the model each day is not required
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Ongoing steps

• Extend the analysis to Standard & Poor 500 index
• Same years
• USA market

• Test different financial securities
• e.g. Cryptocurrencies

• Address the problem with sequence modeling algorithms
• Deep Recurrent Neural Networks
• Long-Short Term Memory Networks

26



Any question?



Thank you!
Any question?


