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Introduction

This study addresses a supply chain network optimization problem, focusing on a
two-echelon inventory system subject to capacity constraints. The goal is to determine
the optimal quantity of products to produce and ship, minimizing total costs. Obtaining
an optimal solution is challenging due to the curse of dimensionality.

Fig. 1: A two-echelon inventory system composed of a central warehouse (first echelon) and three local warehouses (second

echelon). Shopping carts represent customers’ demands.

This study aims to evaluate the effectiveness of Deep Reinforcement Learning (DRL)
algorithms by comparing their performance against traditional static inventory poli-
cies. This comparison will highlight the relative strengths of each approach, providing
valuable insights to decision-makers.

Inventory Control System

For each product type i ∈ {1, . . . , I}, the factory determines its production level ai0,t,
with a unit production cost of pi0. At each time step t ∈ {0, . . . , T}, aij,t units are
shipped to local warehouse j ∈ {1, . . . , J}, which faces a stochastic demand dij, t.
Products shipped to local warehouse j are received after a lead time Lj, incurring
a unit transportation cost of zji. Each warehouse has a maximum capacity of cij
(
∑I

i=1 c
i
0 = c0), a storage cost of hi

j per unit, and a stock level at time t of qij, t.

Parameter Explanation Parameter Explanation

I Number of Product Types pi0 Production Cost (per unit)
J Number of Local Warehouses zij Transportation Cost (per unit)
T Episode Duration (time step) qij,t Stock Level (units)
Lj Transportation Lead Times (time step) cij Storage Capacity (units)
dij,t Demand (units) hi

j Storage Cost (per unit)
aij,t Production and Shipping Level (units) bij Backorder Cost (per unit)

Tab. 1: The system parameters with their corresponding explanations (and units of measure). All these parameters are
integrated and customizable into our open-source library, available on https://github.com/frenkowski/SCIMAI-Gym.

Products are non-perishable and supplied in discrete quantities. Any unsatisfied orders
are back-ordered. Our study differentiates itself from existing literature [1] by incorpo-
rating positive lead times and considering multiple product types.

Main Contributions

We implement a continuous action space (i.e., the neural network directly gen-
erates the action value), denoted by at, with an independent upper bound for
each value, 0 ≤

∑I
i=1 a

i
j,t ≤ cj. Additionally, our proposed balanced allocation

rule ensures a fair distribution of products among local warehouses while main-
taining non-negative stock at the central warehouse.

Algorithm 1 Our proposed allocation rule for continuous action spaces.

for all i ∈ {1, . . . , I} do
if
∑J

j=1 a
i
j,t > qij,t then

while
∑J

j=1 a
i
j,t > qij,t do

x← U (1, J)
if aix,t > 0 then

aix,t← aix,t − 1

The state vector includes all current stocks (on-hand and ordered but not yet
delivered) and the last τ demand values (excluding dt) and is denoted as:

(st,d1,t,d1,t . . . ,dJ,t) .
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Fig. 2: An instance of the demand behavior considering two product types and two local warehouses.

Finally, we design the reward function for time step t as:

(R) max

T∑
t=1

J∑
j=1

I∑
i=1

−[hi
j(q

i
j,t−1 + xij,t−Lj

− dij,t)
+ + bij(d

i
j,t − qij,t−1 − xij,t−Lj

)+

+zija
i
j,t]−

T∑
t=1

I∑
i=1

[hi
0q

i
0,t + pi0a

i
0,t]

The first term captures the inventory cost; the second term represents the back-
order cost, while the third denotes the transportation cost; the final two terms
account for the inventory and production costs at the central warehouse.
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Results

We conducted a set of numerical experiments to benchmark the performances of state-
of-the-art DRL algorithms (i.e., PPO, PG, and A3C) against static policies (i.e.,
base-stock and (s, Q)-policies) [2]. We also implemented an oracle with perfect in-
formation (PI) on demand and an agent that knows the expected value of perfect
information (EVPI) about demand. We performed 250 different simulations for each
of the twelve experiments (by varying I = {1, 2}, J = {1, 2, 3}, and L = {1, 3}),
evaluating seven demand realizations and reporting the PI gap achieved.
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Fig. 3: With a single product type and lead times set to one, A3C outperforms PG, and the (s, Q)-policy demonstrates

superior performance compared to the base-stock policy. When extending lead times to three, a degree of equilibrium is

observed.
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Fig. 4: With two product types and lead times set to one, DRL algorithms show slightly improved performance. When

lead times are extended to three, static policies mildly outperform A3C and PG.

Our results indicate that PPO consistently outperformed other algorithms across
all conducted experiments. The (s, Q)-policy performs commendably, emerging as the
second-best choice. DRL algorithms also outperform EVPI, suggesting that complex-
ities within the problem cannot be adequately addressed simply by considering the
average demand value. Decision-makers should carefully consider these factors when
selecting an appropriate inventory management approach.


