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1. Context

Modern deep-learning models require an ever-increasing 
amount of data. Can we mitigate their data and power 
hungriness by injecting prior knowledge?

While theory-based models are standard in many fields 
but rarely take advantage of the benefits of data science 
techniques, machine learning models are often purely data-
driven, losing the opportunity to exploit the knowledge 
behind the data themselves. This poster presents a few of 
our works combining theory and data science.

2. Challenges and Objectives

Challenges 

(i) Limited generalizability across domains and 

(ii) Complex construction of structured knowledge 
(especially in non-physical phenomena).

Objectives

(i) Improving efficiency by knowledge integration 

(ii) Enhancing model convergence speed and robustness

(iii) Promoting knowledge generalization and heterogenous 
knowledge integration

3. Methods and Results

PINNs for differential equations                                      
(no data at all)

Physics-informed Neural Networks (PINNs) are designed 
for solving partial differential equations without external data, 
relying only on domain dimensions. Networks are trained to 
align the output with the equation and boundary conditions, 
using automatic differentiation to obtain differential forms. 
Direct application of this approach can, however, be very 
ineffective.

In our work[1], we provide a cross-domain experimental 
evaluation of state-of-the-art strategies, designed to 
overcome such limitations. Experimental results highlight 
strengths and pitfalls of current techniques and show that 
currently no strategy can successfully generalize        .

Enforcing Hard constraints         
between inputs/outputs 
(less need for data)

In the presence of some input-output relations, employing 
hard analytical-constrained networks (ACNet) can shrink the 
output search space. Analogous results can be obtained 
softly by adding an unsupervised loss function (LCNet). By 
comparing these models with traditional neural networks, we 
observed that domain-knowledge injection effectively 
improves network performance and robustness with fewer 
training data [2]            .

Symmetrical invariances                                
(adding properties with extra 
knowledge)

We designed a data augmentation strategy applied to a 
baseline model in jet tagging (ParticleNet) with a variable 
strength to enforce the model understanding of the Lorentz 
invariance principle[3]. Our approach could enhance the 
model to respect this additional invariant property, without 
adding complexity, and without affecting performance        . 

4. Conclusions

Leveraging domain knowledge is crucial for enhancing 
performance and resilience of data-driven models in diverse 
applications. The various forms of knowledge integration 
may yield different impacts on model architectures. This 
insight highlights the key challenge in these approaches: 
achieving generalizability. 

In the future, we aim to create more generalized 
knowledge injection frameworks, exploring patterns to 
determine the benefits of each approach. Additionally, we 
plan to explore innovative methods for incorporating 
unstructured knowledge from multiple domains.
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