

Electro-Hydraulic Flight Control Systems

Rocco Gentile – <u>rocco.gentile@polito.it</u>

Cycle: XXXIII Ciclo

Academic Advisor: Prof. Massimo Sorli

Industrial Advisor: Ing. Michael Burke, Ing. Francesco Marino

DIMEAS - Politecnico di Torino

Research Objective

Diagnostic System for Failure Recognition in EHSA is of great interest in aviation MRO market. The goal of this research is to define a technological breakdown for standard Maintenance procedures of these components.

State of Research - Testing

- Development of an Automatic Entry Test for Failure recognition, designed in a Modular way through a specific Test Signal. This modular structure reduces cost and time of more than 80%, compared to the standard OEM procedures.
- Each tests include both the extraction of Traditional Health Features (THF) and of New Health Features (NHF), in order to increase the knowledge on the unit condition.

architecture

Automatic post-processing code for THF and NHF extraction

State of Research – Data collection and analysis

Measured Results

Data collection and Maintenance Database building as "apriori" knowledge for Case Based Reasoning (CBR) Diagnostic Module.

Simulated Results

Extensive simulation campaign through an High-Fidelity Model of the unit under test. These simulations explore the potential of the NHF in identification of the root of the failure in a specific sub-component (f.e: Servovalve).

Simulations with single degradation type • N = 80 increasing levels of degradation D 80 × 5 failures = 400 total simulations Extracted 36 HF related to EHSV

	FB Spring	Spool backlash	Spool clearanc e	1° stage hysteresis	Control ports wear
--	--------------	-------------------	------------------------	------------------------	-----------------------

ρ	EHSV gain k_{sv} Rec. speed S_R	EHSV deadband DB_s Rec. speed S_R	Leakages Q_2	Resolution r_x EHSV hyst. h_i	Max speed S _m
Δ F	EHSV gain k _{sv}	EHSV deadband DB _s	Threshold U ₁₁	Resolution r_x	Rec. speed S_R

Next Steps

- Validation of THF and NHF extraction through real measurement campaign
- Investigation for most suitable Machine Learning algorithm for further CBR Diagnostic Module

Scientific Publications

- Ritter, O., Wende, G., Gentile, R., Marino, F., Bertolino, A. C., Raviola, A., & Jacazio, G. (2018). Intelligent Diagnostics for Aircraft Hydraulic Equipment. Presented at the Fourth European Conference of the PHM Society, Utrecht, Netherlands;
- Ritter, O., Wende, G., Marino, F., Raviola, A., Gentile, R., Bruno, D., Jacazio, G., Sorli, M. (2019). Automatization of primary flight control actuators maintenance procedures using collaborative robotics. Presented at the 7th International Workshop on Aircraft System Technologies (AST 2019), Hamburg, Germany.
- Bertolino, A.C., Gentile, R., Jacazio, G., Marino, F., Sorli M. (2018). EHSA Primary Flight Controls Seals Wear Degradation Model. Presented at the ASME 2018 International Mechanical Engineering Congress and Exposition IMECE2018, Pittsburgh, USA.
- Gentile, R., Jacazio, G., Sorli, M. (2018) Advanced Diagnostics and Prognostic of Electro-Hydraulic Flight Control Systems. Poster presented during the Annual Conference of the Prognostic and Health Monitoring Society, Philadelphia, USA.