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Localized nonlinearity: dynamics of overhead contact lines

Photos of the experimental setup

Modelling of overhead contact lines

e Certified nonlinear software (CEl EN50318): Cate\Way.
 Nonlinearity in:
! \ / /

— Slackening of the droppers m ﬁ

— Loss of contact >

* How to properly tune the FEM parameters?
— Comparison between FE models and a distributed parameter model.
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* How to define the damping distribution?
— Study on non-proportional damping distributions: contact wire with a lumped damper.
— Experimental measurements on railway contact wire and comparison with model predictions.

140

130

120

110
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* How to improve the performance of OCLs? L
— Design of nonlinear damping systems for OCLs, based on a negative stiffness absorber. "
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Distributed nonlinearity: beam under large oscillations

Reduced Order Model (ROM) Experimental tests

* Constitutive nonlinear equation:  Tests are conducted at University of Liege, Space Structures and Systems Lab.
 Avery thin alloy beam is driven through large oscillations, showing a distinctive
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ot 0x 2L\ Jo \0x 0x * NSl is applied to identify the nonlinearity.

 Even nonlinear contributions are included as well, to account for asymmetries

* AROMis built starting from the linear modeshapes ¢; in the structure.

 Aset of N nonlinear equations in the modal domain is obtained considering N
modes:

Photos of the experimental setup

m;tj; + kin; — z(cl,,nr 35-77]-=Qj, j=1,..,N, R<N

 The nonlinear term shows an odd nonlinearity coupling different modes.

Nonlinear System Identification

* NSI (Nonlinear Subspace Identification) method is be used to extract the
modal parameters of the underlying linear system, and to identify the | | | | _ Highlevel _ Lowlevel
nonlinear coefficients. 100 | |

 The identification is performed in the (extended) modal domain.

Sweep tests and nonlinearity detection for different amplitudes: from linear to nonlinear
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