

Dario Anastasio

Dynamics & Identification Research Group dario.anastasio@polito.it

Dynamics of beam structures: From localized to distributed nonlinearities

Supervisor: Prof. Stefano Marchesiello XXXII Cycle

Localized nonlinearity: dynamics of overhead contact lines

Modelling of overhead contact lines

- Certified nonlinear software (CEI EN50318): CateWay.
- Nonlinearity in:
 - → Slackening of the droppers
 - → Loss of contact
- How to properly tune the FEM parameters?
 - → Comparison between FE models and a distributed parameter model.
 - S. Sorrentino, D. Anastasio, A. Fasana, S. Marchesiello, *Distributed parameters and finite element models for wave propagation in railway contact lines*, J. Sound Vib. 410 (2017) 1-18.
- How to define the damping distribution?
 - → Study on non-proportional damping distributions: contact wire with a lumped damper.
 - → Experimental measurements on railway contact wire and comparison with model predictions.
 - D. Anastasio, A. Fasana, L. Garibaldi, S. Marchesiello, Analytical investigation of railway overhead contact wire dynamics and comparison with experimental results, Mech. Syst. Signal Process. 116 (2019) 277–292.
- How to improve the performance of OCLs?
 - → Design of nonlinear damping systems for OCLs, based on a negative stiffness absorber.
 - S. Marchesiello, D. Anastasio, L. Garibaldi, A. Fasana, International patent No. WO2018020397A8 (2018).

Photos of the experimental setup

Stress level (MPa) in the contact wire

Damper for OCLs and Poincaré map of the frame

Distributed nonlinearity: beam under large oscillations

Reduced Order Model (ROM)

• Constitutive nonlinear equation:

$$\mu \frac{\partial^2 y}{\partial t^2} + EI \frac{\partial^4 y}{\partial x^4} - \frac{EA}{2L} \left(\int_0^L \left(\frac{\partial y}{\partial x} \right)^2 dx \right) \frac{\partial^2 y}{\partial x^2} = f(x, t)$$

- A ROM is built starting from the linear modeshapes ϕ_i
- A set of N nonlinear equations in the modal domain is obtained considering N modes:

$$m_j \ddot{\eta}_j + k_j \eta_j - \frac{EA}{2L} \sum_{r=1}^R \left(c_{1,r}^{nl} \eta_r^2 \right) c_{2,j}^{nl} \eta_j = Q_j, \quad j = 1, ..., N, \quad R \leq N$$

The nonlinear term shows an odd nonlinearity coupling different modes.

Experimental tests

- Tests are conducted at University of Liège, Space Structures and Systems Lab.
- A very thin alloy beam is driven through large oscillations, showing a distinctive distributed nonlinear behavior.
- NSI is applied to identify the nonlinearity.
- Even nonlinear contributions are included as well, to account for asymmetries in the structure.

Photos of the experimental setup

Sweep tests and nonlinearity detection for different amplitudes: from linear to nonlinear

Nonlinear System Identification

- **NSI** (Nonlinear Subspace Identification) method is be used to extract the modal parameters of the underlying linear system, and to identify the nonlinear coefficients.
- The identification is performed in the (extended) modal domain.

